
Software Engineering

and Architecture

Broker Pattern

Architectural Pattern for

Remote Method Invocation

Broker

• Broker “bundles” the

four elements:

• Solutions are

– Request/Reply protocol

– Marshalling

– Proxy Pattern

– Naming Systems

CS@AU Henrik Bærbak Christensen 2

Broker

• Broker bundles the

four elements:

• Solutions are

– Request/Reply protocol

– Marshalling

– Proxy Pattern

– Naming Systems

CS@AU Henrik Bærbak Christensen 3

Broker

• Broker bundles the

four elements:

• Solutions are

– Request/Reply protocol

– Marshalling

– Proxy Pattern

– Naming Systems

CS@AU Henrik Bærbak Christensen 4

Broker

• Broker bundles the

four elements:

• Solutions are

– Request/Reply protocol

– Marshalling

– Proxy Pattern

– Naming Systems

CS@AU Henrik Bærbak Christensen 5

Broker

• Broker bundles the

four elements:

• Solutions are

– Request/Reply protocol

– Marshalling

– Proxy Pattern

– Naming Systems

CS@AU Henrik Bærbak Christensen 6

A Picture of the ‘Flow’

• The method call

flows from the client’s

ClientProxy, through

intermediaries until

it ends in the Servant

– Each intermediate

responsible for a

transformation

• domain-to-network

and vice-versa

• … and back again…

– “Chained calls”

CS@AU Henrik Bærbak Christensen 7

The ‘Side’ Perspective

• Client side

CS@AU Henrik Bærbak Christensen 8

The ‘Side’ Perspective

• Server side

CS@AU Henrik Bærbak Christensen 9

Dynamics (Client)

CS@AU Henrik Bærbak Christensen 10

Dynamics (Server)

CS@AU Henrik Bærbak Christensen 11

Domain Level

• Domain level represents the actual Role

CS@AU Henrik Bærbak Christensen 12

Marshalling Level

• Encapsulate translation

to/from bits and objects

CS@AU Henrik Bærbak Christensen 13

IPC Level

• Interprocess Communication

– Encapsulate low-level OS/Network communication

CS@AU Henrik Bærbak Christensen 14

Relating to   

• Broker pattern and    ?

– Yes, yes, and yes

•  Encapsulate what varies

– We would like to vary marshalling format: Requestor+Invoker

– We would like to vary IPC method : xRequestHandler

•  Object composition

– We delegate to the requestor. We delegate to the RequestHandl.

CS@AU Henrik Bærbak Christensen 15

In Practice

How Does It Look Then…

The TeleMed Interface

• Will only look at the two

methods to

– Upload

• processAndStore

– Download

• getObservationsFor

CS@AU Henrik Bærbak Christensen 17

TeleMed Proxy

• ClientProxy =

Proxy calls

CS@AU Henrik Bærbak Christensen 18

Note: There is only a
single TeleMed

servant object. Thus
the objectId is ‘not

applicable’

Note: location =
server, is provided as
a global parameter,

and not part of
parameter list…

Identity of Methods

• Remember: We can only send byte arrays aka. Strings

• Need to Marshall method names as well.

• ”Mangling” = Concatenate class name and method name

CS@AU Henrik Bærbak Christensen 19

Requestor

CS@AU Henrik Bærbak Christensen 20

General Implementation!

Use JSON and the GSON

library

Generic return type is

pretty helpful…

And Object… = arrays of

mixed types are really

nasty that required some

googling to find out how.

This is code provided by
the FRDS.Broker library!

Request Handlers

• Let us skip them for the moment…

• Basically, they are responsible for the request/reply

protocol

• Broker Library code base come with two variants:

– Socket: Raw Java TCP/IP network implementations

– HTTP: Use as a raw transport (URI Tunneling)

CS@AU Henrik Bærbak Christensen 21

Invoker

CS@AU Henrik Bærbak Christensen 22

Basically, you need a large

switch on each method

name to do the ‘upcall’,

and extract the relevant

parameters for the method

For multi-object system,
you need something more
complex. Stay tuned – we
will look at it next week...

Demarshall into (objectId,
operation name, arguments)

Invoker

• Once the method is determined, parameter list can be

demarshalled, and the upcall made…

CS@AU Henrik Bærbak Christensen 23

TeleMed Servant

• Servant =

Domain

implementation

• Not really

relevant for

Broker, but

for the system ☺

CS@AU Henrik Bærbak Christensen 24

Summary

• The flow

CS@AU Henrik Bærbak Christensen 25

Summary

• It is a Framework !

• Only roles

– ClientProxy

– Invoker

• … are TeleMed specific!

• (… and HotStone

specific!)

CS@AU Henrik Bærbak Christensen 26

Limitations

• No Name Service / Registry required for TeleMed

– Parameterized which machine the servant object resides on

• Use DNS as kind of registry, defaults to ‘localhost’

– More RPC than RMI

• Remote Procedure Call on ‘single type object’, not on multiple

objects

• Only Value types can be passed, not Reference types

– No object references ever pass from client to server!

• Asymmetric

– Client-server protocol, no ‘callback’ from server possible

– I.e. The Observer pattern can not be implemented

CS@AU Henrik Bærbak Christensen 27

We treat String as pass-by-value

Why No Call Backs to Clients?

• Because server calling clients is BAD ☺ !

• No no no. Nothing is every ‘good’ or ‘bad’ in science ☺

• We will return to why ‘servers should not call clients’ in

next week…

CS@AU Henrik Bærbak Christensen 28

Deployment

• In the code bases distributed, the client and server side

classes are pooled into one big source tree

– src/

• In real deployments you need to split’em

– Server: Server side specific classes

– Core: Core domain interfaces and PODOs

– Client: Client side specific classes

• The client side deployment (Core + Client)

• The server side deployment (Core + Server)

CS@AU Henrik Bærbak Christensen 29

Simply easier in our teaching

The Process?

How did I get there?

Developing it

• All well – you see the final picture but how was it

painted?

• Challenge: TDD of a distributed system?

– I cannot (easily) automate that a server needs to be running on

some remote machine, can I?

• (Well we can, but that is another course…)

CS@AU Henrik Bærbak Christensen 31

Exercise

• Which level hinders TDD???

– Or rather automated testing

• And you know how to deal

with it, right?!?

• What is the answer???

CS@AU Henrik Bærbak Christensen 32

Principle 1+2+Doubles

• It is the IPC Level that hinders TDD

• But

– Programmed to an interface

– Object compose a Test Double

into place instead!!!

• A Fake Object IPC

CS@AU Henrik Bærbak Christensen 33

Faking the IPC

CS@AU Henrik Bærbak Christensen 34

LocalMethodCall
ClientRequestHandler

No need to start server.

No concurrency.

All aspects (except IPC) can be TDD’ed

@BeforeEach

• Binding the Broker / Coupling the delegates together

• That is

– Link proxy to requestor, requestor to CRH double, CRH to

invoker, and the Invoker to the servant object

CS@AU Henrik Bærbak Christensen 35

The only test double!
The rest are production code!

Fun Fact

• Nancy?

– A fictive person which exists in all Danish medical systems

• She even has a face book profile ☺

CS@AU Henrik Bærbak Christensen 36

Make a Test Case

• Call client proxy, assert something stored in XDS

CS@AU Henrik Bærbak Christensen 37

‘xds’ is both Spy and FakeObject

The IPC Level

Talking network’ish

Choosing IPC

• The most fundamental level

– Sockets

• More modern approach

– URI Tunneling using HTTP web servers

CS@AU Henrik Bærbak Christensen 39

Rule #1

• Find stuff on the internet ☺

– Jakob Jenkov has fine tutorials on socket server programming

• Single thread

• Multi thread

• Thread pooled

• Question of concurrency

– Single thread Only one call at the time

– Multi thread Unlimited => Memory exhausted!

– Thread pool N threads = Best of both worlds

CS@AU Henrik Bærbak Christensen 40

Client Request Handler

• Socket

– “modificed EchoClient"

• The old HTTP protocol

– Create socket

– Send request

– Read reply

– Close socket

• Inefficient but reliable

CS@AU Henrik Bærbak Christensen 41

Server Request Handler

• Jenkov single thread

– Accept incoming socket

– Read request

– Call invoker

– Send reply

– Close socket

CS@AU Henrik Bærbak Christensen 42

Summary

CS@AU Henrik Bærbak Christensen 43

