/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Broker Pattern
Architectural Pattern for
Remote Method Invocation

/v

AARHUS UNIVERSITET

 Broker “bundles’” the
four elements:

» Solutions are
Request/Reply protocol

Marshalling

Proxy Pattern

Naming Systems

CS@AU

Broker

Client side

ClientProxy

method(a,b,c)

/ marshalls call

Requestor

request(location, objectld,
operationld, arguments)

".
Y
h

Y

‘531' sends on network

ClientRequestHandler

send(address, byte[])

e

Henrik Baerbak Christensen

«nterface» |
Role A
Server side
method(a,b,c) ‘
‘] ‘ ‘ Servant ‘
Domain
‘ method(a,b,c) ‘
-7
//, l
. Demarshalls and
Marshalling . dispatchs call
Invoker
handleRequest(byte[])
/ receives on network
IPC ‘ ServerRequestHandler
‘ ‘ byte[] receive() ‘
.‘/-’
IPC 2
Library

. IPC
Library

/v

AARHUS UNIVERSITET

 Broker bundles the
four elements:

e Solutions are
— Request/Reply protocol

— Marshalling
— Proxy Pattern

— Naming Systems

CS@AU

Broker

B «nterface» |
Role A
i i Server side
Uyl 2t method(a,b,c)
ClientProxy ‘ . ‘ ‘ Servant ‘
Domain
method(a,b,c) ‘ method(a,b,c) ‘
-7
//, .
f marshalls call) Demarshalls and
request(location, objectld, Invoker
operationid, arguments) handleRequest(byte[])
"".\ ’ﬂ
4 ‘531' sends on network / receives on network
ClientRequestHandler IPC ‘ ServerRequestHandler
send(address, byte[]) ‘ ‘ byte[] receive() ‘
. N — — i
IPC IPC 2
Library Library

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

 Broker bundles the
four elements:

» Solutions are
Request/Reply protocol

Marshalling

Proxy Pattern

Naming Systems

CS@AU

Broker

B «nterface» |
Role A
i i Server side
Uyl 2t method(a,b,c) ‘
ClientProxy ‘ . ‘ ‘ Servant ‘
Domain
method(a,b,c) ‘ method(a,b,c) ‘
i
f marshalls call) Demarshalls and
request(location, objectld, Invoker
operationld, arguments) handleRequest(byte[])
‘ll"'t ’q
Y I}
‘531' sends on network / receives on network
ClientRequestHandler IPC ‘ ServerRequestHandler
send(address, byte[]) ‘ ‘ byte[] receive() ‘
. \\ ./_r
3 IPC IPC 2
Library Library

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

 Broker bundles the
four elements:

» Solutions are
— Request/Reply protocol

— Marshalling
— Proxy Pattern

— Naming Systems

CS@AU

Broker

B «nterface» |
Role A
i i Server side
e method(a,b,c) ‘
ClientProxy ‘ . ‘ ‘ Servant ‘
Domain
method(a,b c) ‘ method(a,b,c) ‘
-7
//, .
f marshalls call) Demarshalls and
Requestor Marshalling /_ dispatchs cal
request(location, objectld, Invoker
operationld, arguments) handleRequest(byte[])
"l"'\. :ﬂ
‘531' sends on network receives on network
ClientRequestHandler IPC ‘ ServerRequestHandler
send(address, byte[]) ‘ ‘ byte[] receive() ‘
. \\ ./_r
3 IPC IPC 2
Library Library

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

 Broker bundles the
four elements:

» Solutions are
— Request/Reply protocol

— Marshalling
— Proxy Pattern

— Naming Systems

CS@AU

Client side

ClientProxy

method(a,b,c)

/ marshalls call

Broker

Requestor

request(location, objectld,
operationld, arguments)

".
Y
h

Y

‘531' sends on network

ClientRequestHandler

send(address, byte[])

e

Henrik Baerbak Christensen

. IPC
Library

«nterface» |
Role A

Server side

method(a,b,c) ‘
‘ ‘ ‘ Servant ‘

Domain

‘ method(a,b,c) ‘

-7

/, '
. Demarshalls and
Marshalling y dispatchs call
Invoker
handleRequest(byte[])
N .Ilflll
/ receives on network
IPC ‘ ServerRequestHandler
‘ ‘ byte[] receive() ‘
.‘/-’
IPC 2
Library

/v

AARHUS UNIVERSITET

 The method call
flows from the client’'s
ClientProxy, through
Intermediaries until
it ends in the Servant

— Each intermediate
responsible for a
transformation

 domain-to-network
and vice-versa

* ... and back again...
— “Chained calls”

—\——..._}

A Picture of the ‘Flow’

- winterface»
Role
Client side method(a,b,c)
c |i|‘-"\t|""3”"31IF I‘Z)omailu

Khod(* o)

\

&rshalls call

\ Re){estor Marshalling

request\o\atl ob]ectld

operatlon argym ents

u' se&khﬂork

ClientRe quN-l aNer

Server side

Servant

ho{a,b,c) ‘

77
/, '
/] Dgmarshalls and
Ve atchs call

Jovoflr

han%Reqfst(byte[])

g

/|
{

! a
/ regeives on network

send(address, bN])

IPC ‘ %rver%ueslHandler

K byte[] %ceive()

. IPC
Library

/

(

CS@AU Henrik Baerbak Christensen

IPC
Library

/v The ‘Side’ Perspective

. . «interface»
« Client side 7] R
CllentProxy Client side // method(a.b.c)
- Proxy for the remote servant object, implements the same inter- ClientProxy Lomairt
face as the servant.
. method(a,b,c)
- Translates every method invocation into invocations of the as-
sociated requestors’s request() method.
\l/ marshalls call
Requestor Requestor Marshalling
- Performs marshalling of object identity, method name and ar- request(location, objectld, h
uments into a byte array. operationld, arguments) ¢
nvokes the ClientRe uestHandl_er’s cend() method. \
+ Demarshalls returned byte array into return value(s). \

- Creates client side exceptions in case of failures detected at the \
. . . \| sends on network
server side or during network transmission.

ClientRequestHandler IPC Ser
ClientRequestHandler send(address, byte[]) byte
\\\
- Performs all inter process communication on behalf of the client N Lil:rgry

side, interacting with the server side’s server request handler.

CS@AU Henrik Baerbak Christensen 8

/v

AARHUS UNIVERSITET

« Server side

Servant

The ‘Side’ Perspective

- Domain object with the domain implementation on the server

side.
Invoker

« Performs demarshalling of incoming byte array.
- Determines servant object, method, and arguments and calls the

Eiven method in the identified Servant object.
- Performs marshalling of the return value from the Servant ob-

ject into a reply byte array, or in case of server side exceptions
or other failure conditions, return error replies allowing the
Requestor to throw appropriate exceptions.

ServerRequestHandler

- Performs all inter process communication on behalf of the server

side, interacting with the client side’s ClientRequestHandler.
- Contains the event loop thread that awaits incoming requests

from the network.

- Uponreceiving a message, calls the Invoker’s nandlerequest method
with the received byte array. Sends the reply back to the client

side.

CS@AU

Henrik Baerbak Christensen

1 «interface» -
Role A
| S Server side
method(a,b,c) B
| ‘ ‘ Servant ‘
Domain
‘ method(a b,c) ‘
7
/// l
/.f/ Qemarshallsand
Marshalling Y dispatchs call
Invoker
handleRequest{byte[])
irk F,f’ receives on network
er IPC ‘ ServerRequestHandler ‘
‘ byte[] receive() ‘
./!
IPC i
' Library

/v

Dynamics (Client)

AARHUS UNIVERSITET
Client Side Server Side
:ClientProxy :Requestor :ClientRegHandl :ServerReqHand|
[
method(a,b,c) | i '
- request(.. :
® q (..) -JI_ i receive()
marshall :
o send(...)
- =
T — —
receive() (See next diagram)
F =
. send(...)

demarshall :
= |

------- | |

L] | |

| | |

| |

CS@AU

Broker client side dynamics.

Henrik Baerbak Christensen

10

Y Dynamics (Server)

AARHUS UNIVERSITET
Client Side Server Side
:ClientRegHand| .ServerRegHandl :Invoker :Servant
T T | I
1 | |
| |
send(...) receive()] |
-~ - i
handleRequest |
> |
demarshall :
1 receive() method(a,b,c) ,
F|i
marshall :
§ | ! I
= |
LI |
di... | |
send(...) _J : :
| |

T I

Broker server side dynamics.

CS@AU Henrik Baerbak Christensen 11

VeV Domain

AARHUS UNIVERSITET
 Domain level represents the actual Role
Servant

- Domain object with the domain implementation on the server
side.

ClientProxy

- Proxy for the remote servant object, implements the same inter-
face as the servant.

- Translates every method invocation into invocations of the as-
sociated Requestor’s request () method.

Level

- «interface»
e Role
Client side P
7 method(a,b,c)
ClientProxy | |
Domain

method(a,b,c) ‘

CS@AU Henrik Baerbak Christensen

s Server side

Servant

method(a,b,c)

—

12

/v Marshalling Level

AARHUS UNIVERSITET

J marshalls call

« Encapsulate translation

Requestor

to/from bits and objects

request(location, objectld,
operationld, arguments)

Requestor

+ Performs marshalling of object identity, method name and ar-

Euments into a byte array.

nvokes the ClientRequestHandler’s sena() method.

» Demarshalls returned byte array into return value(s).

- Creates client side exceptions in case of failures detected at the

server side or during network transmission.

Invoker

» Performs demarshalling of incoming byte array.
+ Determines servant object, method, and arguments and calls the

%iven method in the identified Servant object.
erforms marshalling of the return value from the Servant ob-

ject into a reply byte array, or in case of server side exceptions
or other failure conditions, return error replies allowing the

L

Y
"-.

Requestor to throw appropriate exceptions.

CS@AU Henrik Baerbak Christensen

arshall

S

// '
Demarshalls and
dispatchs call

A

Invoker

handleRequest(byte[])

7

i

13

VeV IPC Level

AARHUS UNIVERSITET

 Interprocess Communication
— Encapsulate low-level OS/Network communication

Y -

\\| sends on network / receives on network
ClientRequestHandler IPC ServerRequestHandler

_____________ ==
send(address, byte[]) byte[] receive()
N /
DN [] K
ClientRequestHandler K IPC IPC ﬁ//
+ Performs all inter process communication send/receive of data on L|brary lerary
behalf of the client side, interacting with the server side’s Server-

RequestHandler.

ServerRequestHandler

+ Performs all inter process communication on behalf of the server

side, interacting with the client side’s ClientRequestHandler.
- Contains the event loop thread that awaits incoming requests

from the network.
- Uponreceiving a message, calls the Invoker’s nandierequest method

with the received byte array. Sends the reply back to the client
side.

CS@AU Henrik Baerbak Christensen 14

/v Relatingto ® ©® @

AARHUS UNIVERSITET
* Broker patternand ® ® @ ?

— Yes, yes, and yes

« ® Encapsulate what varies
— We would like to vary marshalling format: Requestor+invoker
— We would like to vary IPC method: xRequestHandler

« @ Object composition
— We delegate to the requestor. We delegate to the RequestHandl.

/v

AARHUS UNIVERSITET

In Practice

How Does It Look Then...

/v The TeleMed Interface

AARHUS UNIVERSITET
public interface TeleMed {

« Will only look at the two
methods to

— Upload v tetess

» processAndStore e 10 o

s IPCException 1

String processAndStore(TeleObservation teleObs);

— Download
» getObservationsfFor

patientId

interval

s IPCException 1
List«TeleObservation> getObservationsFor(String patientId,

TimeInterval interval);

CS@AU Henrik Baerbak Christensen 17

/v TeleMed Proxy

AARHUS UNIVERSITET

* CllentPrOxy = \J/ marshalls call
Proxy calls Requestor

public class TeleMedProxy implements TeleMed, ClientProxy {

public static final String TELEMED 0BJECTID = "singleten"; request(location, objectid,
operationld, arguments)

b

private final Requestor requestor;

e
public TeleMedProxy(Reguestor reguestor) {

this.requestor = reguestor;

b
@Override Note: There is only a
public String processAndStore(TeleObservation teleObs) { Single TeleMed
String wid = .
reguestor.sendRequestAndAwaitReply (TELEMED_OBJECTID, OperationNames.PROCESS_AND_STORE_OPERATION, Servant ObjeCt' ThUS
String.class, teleObs); the object/d iS ’not
return vid; . ,
} applicable
@0verride
public List<TeleObservation> getObservationsFor(String patientId, TimeInterval interval) { Note: location =

Type collectionType =

new TypeToken<List<TeleObservation>>(){}.getType(); server, Is prOVldEd as

List<TeleObservation> returnedlList; a glOba/ parameter,
try {
returnedList = reguestor.sendRequestAndAwaitReply(TELEMED_OBJECTID, and nOt part Of
| — .
OperatienNames.GET_OBSERVATIONS_FOR_OPERATION, parameter list...

CS collectionType, patientId, interwval);

/v Identity of Methods

AARHUS UNIVERSITET
« Remember: We can only send byte arrays aka. Strings
* Need to Marshall method names as well.

public class OperationNames {

public static fimal String FRDEESS_AHD_STDE‘E_DPEF.‘ATIDN = "telemed-process-and-store";
public static fimal String GET_OBSERVATIONS_FOR_OPERATION = "telemed-get-observation-for";
public static fimal String CORRECT_OPERATION = "telemed-correct”;

public static fimal String GET_OBSERVATION_OPERATION = "telemed-get-observation";

public static fimal String DELETE_OPERATION = "telemed-delete";

« "Mangling” = Concatenate class name and method name

CS@AU Henrik Baerbak Christensen 19

/v

AARHUS UNIVERSITET

General Implementation!
Use JSON and the GSON
library

Generic return type is
pretty helpful...

And Object... = arrays of
mixed types are really

nasty that required some
googling to find out how.

This is code provided by

the FRDS.Broker library!

CS@AU

Requestor

@0verride
public «<T> T sendRequestAndAwaitReply(String objectId, String operationName,

Type typeOfReturnValue, Object... arguments) {

/S Perform marshalling, first arguments, next full reguest
String marshalledArgumentList = gson.toJson(arguments);
ReqguestObject request = new RequestObject(objectId, operationName, marshalledArgumentList);

String marshalledRequest = gson.toldson(request);

// Ask CRH to do the network call

String marshalledReply = clientRequestHandler.sendToServerAndAwaitReply(marshalledRequest);

/S Demarshall the reply

ReplyObject reply = gson.fromJson(marshalledReply, ReplyObject.class);

// First, verify that the reguest succeeded

if (!'reply.isSuccess()) {

throw new IPCException(reply.getStatusCode(),
"Failure during client requesting operation ""

+ operationName
+ "'. ErrorMessage is: " i public class ReguestObject {

1 * reply.errorDescription()); private final String operationName;
L o))) private final String payload;
/ No errors - so get the payload of the reply . . . A
. private finmal S5tring objectId;
String payload = reply.getPayload();

// and demarshall the returned value
T returnValue = null;
if (typeOfReturnValue !'= null)
returnValue = gson.fromdson(payload, typeOfReturnValue);

return returnValue;

Henrik Baerbak Christensen 20

/v Request Handlers

AARHUS UNIVERSITET
» Let us skip them for the moment...

« Basically, they are responsible for the request/reply
protocol

» Broker Library code base come with two variants:
— Socket: Raw Java TCP/IP network implementations
— HTTP: Use as a raw transport (URI Tunneling)

/v

AARHUS UNIVERSITET

Basically, you need a /large
switch on each method
name to do the ‘upcall’,
and extract the relevant
parameters for the method

For multi-object system,
you need something more

complex. Stay tuned — we
will look at it next week...

CS@AU

InvoKer

d
/ Demarshalls and

public class TeleMedJSONInvoker implements Invoker { // dhpatchscaﬂ

private final TeleMed teleMed;

]) Invoker
private final Gson gson;

handleRequest(byte[])

public TeleMedJSONInvoker(TeleMed teleMedServant) {

teleMed = teleMedServant; ’ﬂ |

gson = new Gson();

} Demarshall into (objectld,
eoverride operation name, arguments)

public Strimg handleReguest(String reguest

// Do the demarshalling

ReHuestﬂhject reHuestﬂhject = Eson.-Froszan(reHuestI ReHuestﬂhject.class);

JsonArray array = JsonParser.parseString(requestObject.getPayload()).getAsIsonArray();

ReplyObject reply;
/+ As there is only one TeleMed instance (a singleton)

the objectId is not wvsed for anything in our case.
*/ public class RequestObject {
: private final String operationName;
private final String payload;

private final String objectId;

try {
// Dispatching en all known operations
// Each dispatch follows the same algorith

// a) retrieve parameters from json array

/4 b) invoke servant method
// ¢) populate a reply object with return values

if (requestObject.getOperationName().equals(0OperationNames.
PROCESS_AND_STORE_OPERATION)) {

Henrik Baerbak Christensen 22

eV Invoker

AARHUS UNIVERSITET

* Once the method is determined, parameter list can be
demarshalled, and the upcall made.

if (requestObject.getOperationName().equals(OperationNames.

PROCESS_AND_STORE_ GF‘ER‘ATIGH}} { /

TelelObservation ts = gﬁan.fraszcn{arrav.get{E};

TeleObservation.class);
} else if (requestObject.getOperationName().equals(OperationNames.

. . GET_OBSERVATIONS_FOR_ GPERATION}] {
String vwid = teleMed.processAndStore(ts); 7 pr R -

Farameter conventlion: (&) = patientliad

reply = new ReplyObject(HttpServlietResponse.SC_CREATED, Strlng patientId = gson.fromJson(array.get(@), String.class);

gson.todson{uidl); // Parameter convention: [1] = time interval
TimeInterval interval = gson.fromJson(array.get(l),
TimeInterval.class);

List<TeleObservation> tol =
teleMed.getObservationsFor(patientId, interwvall;

int _statusCode =

// And marshall the ‘-Er‘-'"

CS@AU return gson.toJdson(reply); 23

eV TeleMed Servant

AARHUS UNIVERSITET

_— : : Ser
() E;EBr\/Ear]t —_— public class TeleMedServant implements TeleMed, Servant {

Domain
public TeleMedServant (XDSBackend xds) {

implementation | e = was

private XDSBackend =xds;

BOverride

public String processAndStore (TeleObservation teleObs) |
// Generate the XML document representing the
// observation in HL7 (HealthlLevel7) format.
HL7Builder builder = new HL7Builder():
Director.construct (teleCbs, builder) ;

[Not rea”y Document hl7Document = builder.getResult () ;

I t f // Generate the metadata for the cbservation
rEB Ea\lear] C)r MetadataBulilder metaDataBuilder = new MetadataBuilder ():

Director.construct (teleObs, metaDataBuilder) ;

BrOker, but MetaData metadata = metaDataBuilder.getResult():
// Finally store the document in the XDS storage system
for the SyStem @ String unigueId = null;

uniqueld = xds.provideAndReglisterDocument (metadata, hl7Document) ;

return unigqueId;

CS@AU Henrik Baerbak Christensen 24

Y Summary

AARHUS UNIVERSITET
. w«interface» |
° The ﬂ ow A Role A |
RIS o method(a,b,c) s sener s
Cliel\tProxy I‘JomairL Servant

Khod(* o)

\ &rshalls call /]
e

\ Re*estor Marshalling -
/nvo/er

request catl objectld,
operatlon arg \ments) han%Reqfst(byte[])
' sen twork regzives on network

Cl |entReque Ha IPC ‘ %rver%ueslHandler

send(address, bN]) \ K byte[] %ceive() ‘
. . J ’
) IPC
Library

CS@AU Henrik Baerbak Christensen 25

/v

AARHUS UNIVERSITET
It is a Framework !

* Only roles
— ClientProxy
— Invoker

... are TeleMed specific!

* (... and HotStone
specific!)

CS@AU

S

ummary

Client side

ClientProxy

method(a,b,c)

/ marshalls call

Requestor

request(location, objectld,
operationld, arguments)

"u

Y
"u

Y
‘531' sends on network

ClientRequestHandler

send(address, byte[])

e

. IPC
Library

Henrik Baerbak Christensen

Invoker

handleRequest(byte[])

’ A
/ receives on network

‘ ServerRequestHandler

‘ byte[] receive() ‘

.‘/ -’
IPC 2
Library

26

«nterface» |
Role A
Server side
method(a,b,c)
‘] ‘ ‘ Servant ‘
Domain
‘ method(a,b,c) ‘
77
//, l
Demarshalls and
Marshallin

/v Limitations

AARHUS UNIVERSITET

 No Name Service / Registry required for TeleMed

— Parameterized which machine the servant object resides on
» Use DNS as kind of registry, defaults to ‘localhost’

— More RPC than RMI

» Remote Procedure Call on ‘single type object’, not on multiple
objects

« Only Value types can be passed, not Reference types
— No object references ever pass from client to server!

. Asymmetric

— Client-server protocol, no ‘callback’ from server possible
[— |.e. The Observer pattern can not be implemented]

CS@AU Henrik Baerbak Christensen 27

/~ Why No Call Backs to Clients?

AARHUS UNIVERSITET
« Because server calling clients is BAD ©!
* No no no. Nothing is every ‘good’ or ‘bad’ in science ©

« We will return to why ‘servers should not call clients’ in
next week...

/v Deployment

AARHUS UNIVERSITET

* In the code bases distributed, the client and server side
classes are pooled into one big source tree

— src/ '

* In real deployments you need to splitem

— Server: Server side specific classes i
— Core: Core domain interfaces and PODOs H
— Client: Client side specific classes

« The client side deployment (Core + Client)
* The server side deployment (Core + Server)

CS@AU Henrik Baerbak Christensen 29

/v

AARHUS UNIVERSITET

The Process?

How did | get there?

/v Developing it
AARHUS UNIVERSITET
« All well — you see the final picture but how was it

painted?

« Challenge: TDD of a distributed system?

— | cannot (easily) automate that a server needs to be running on
some remote machine, can 17

« (Well we can, but that is another course...)

/v

AARHUS UNIVERSITET
 \Which level hinders TDD?7?7?

— Or rather automated testing

 And you know how to deal
with it, right?!?

« What is the answer???

CS@AU

Exercise

Client side

ClientProxy

method(a,b,c)

/ marshalls call

Requestor

request(location, objectid,
operationld, arguments)

".

Y
".
Y

\}M' sends on network

ClientRequestHandler

. IPC
Library

Henrik Baerbak Christensen

send(address, byte[]) ‘

«interface» |
Role R
Server side
method(a,b,c) .
| | ‘ Servant ‘
Domain
‘ method(a,b,c) ‘
=
/// I
g D_emarsha lls and
Marshalling dispatchs call
Invoker
handleRequest(byte[])
;:’ receives on network
IPC ServerRequestHandler
‘ byte[] receive() ‘
./!
IPC o
Library

32

/v

AARHUS UNIVERSITET

o [tis the IPC Level that hinders TDD

 But

— Programmed to an interface

— Object compose a Test Double
into place instead!!!

» A Fake Object IPC

CS@AU

Principle 1+2+Doubles

= «interface» |
Role A
i i Server side
ClEnsIEe method(a,b,c) .
ClientProxy) ‘ Servant
Domain
method(a,b,c) ‘ method(a,b,c) ‘
7
| marshalls call) " Demarshalls and
Requestor Marshalling ' dispatchs call
request{location, objectld, Invoker
operationld, arguments) handleRequest(byte(])
'\". ’ﬂ
\|{ sends on network / receives on network
ClientRequestHandler IPC ‘ ServerRequestHandler
send(address, byte[]) ‘ ‘ byte[] receive() ‘
" \\ ./_,
) IPC IPC 2%
Library Library

Henrik Baerbak Christensen

33

\ 4
AARHUS UNIVERSITET

public class LocalMethodCallClientRequestHandler implements ClientRequestHandler {

private fimal Invoker invoker;
private String lastRequest; private String lastReply;

public LocalMethodCallClientRequestHandler(Invoker invoker) {

this.invoker = invoker;

}

A0verride

public $tring sendToServerAndAwaitReply(String reguest) {

lastRequest = request;

invoker.handle&eguest!reguest);

lastReply = reply;

String reply =

return reply;

s

No need to start server.

Faking the IPC

«interface»
Role

Client side . method(a,b,c)
ClientProx | |
y Domain
method(a,b,c)
/ marshalls call
Requestor Marshalling

request(location, objectld,
operationld, arguments)

".
|
".
\
|/ sends

ork

No concurrency.

LocalMethodCall
ClientRequestHandler

IPC

All aspects (except IPC) can be TDD’ed

CS@AU

7

v
Ta Server side
‘ Servant ‘
‘ method(a,b,c) ‘
7
//
. . Demarshalls and
Y dispatchs call
Invoker
handleRequest({byte[])

Henrik Baerbak Christensen

T
Library

34

/v @BeforeEach

AARHUS UNIVERSITET
« Binding the Broker / Coupling the delegates together

RBEefore
public void setup() {
teleObsl = HelperMethods.createObservationlZOover70forNancy () ;
// Create server side implementations
xds = new FakeObjectXDSDatabase();
TeleMed teleMedServant = new TeleMedServant (xds);

// Server side broker implementations
Invoker invoker = new StandardJSONInvoker (teleMedSerwvant):;

// Create client side broker implementations
ClientReguestHandler clientRequestHandler = new LocalMethodCallClientRequestHandler (invoker);
Reguestor redquestor = new StandardJSONRequestor (clientRequestHandler);

// Finally, create the client proxy for the TeleMed
teleMed = new TeleMedProxy (recquestor);

The only test double!

e Thatis The rest are production code!

— Link proxy to requestor, requestor to CRH double, CRH to
invoker, and the Invoker to the servant object

CS@AU Henrik Baerbak Christensen 35

eV Fun Fact

AARHUS UNIVERSITET
* Nancy?
— Afictive person which exists in all Danish medical systems

2512489996 25-12-1948 K Berggren Nancy AnnTest Testpark Allé 48 3400 219 24 S$gnnerne Max og Ruddi. Dgtrene Kirsten og Britta.

« She even has a face book profile ©

https://da-dk facebook.com » nancy.a.berggren -

Nancy Ann Berggren | Facebook

Nancy Ann Berggren er pa Facebook. Bliv medlem af Facebook, og fa kontakt med Nancy
Ann Berggren og andre, du maske kender. .. MedCom, profile picture

CS@AU Henrik Baerbak Christensen 36

eV Make a Test Case

AARHUS UNIVERSITET
« (Call client proxy, assert something stored in XDS

ETest

public void shouldStoreFromClient () {
// WMancy uploads a single cobservation
teleMed.processindStore (teleCbsl) ;

// And the proper HL7 document 1s stored in the backend XDS
Document stored = xds.getlLastStoredObservation():
HelperMethods.asser atDocumentRepresentsObservationlllover7l0forNancy (stored) ;

BBefore
publicroid setup() {

= HelperMethods.createObservationlZOover70forNancy () ;
Create server side implementations

xds = new FakeObijectXDSDatabase():
TeIeMea teIeMeaServant = new TeIeMedServant(xds];

CS@AU Henrik Baerbak Christensen 37

/v

AARHUS UNIVERSITET

The IPC Level

Talking network’ish

/v Choosing IPC

AARHUS UNIVERSITET

« The most fundamental level
— Sockets

 More modern approach
— URI Tunneling using HTTP web servers

VeV Rule #1

AARHUS UNIVERSITET

* Find stuff on the internet ©

— Jakob Jenkov has fine tutorials on socket server programming
« Single thread
« Multi thread
* Thread pooled

« Question of concurrency
— Single thread Only one call at the time
— Muilti thread Unlimited => Memory exhausted!
— Thread pool N threads = Best of both worlds

- Client Request Handler

AARHUS UNIVERSITET coverride

public String sendToServerAndAwaitReply(String request) {
Socket clientSocket = null;

» Socket
OC e // Create the socket connection to the host

PrintWriter out;
BufferedReader in;

- “mOdificed EChOCIient" trglientsocket = new Socket(hostname, port);

out = new PrintWriter(clientSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(
clientSocket.getInputStream()));

} catch (I0Exception e) {
throw new IPCException("Socket creation problems”, e);

}

« The old HTTP protoca
// Send it to the server (= write it to the socket stream)
out.println(request);
Create SOCket // Block until a reply is received
String reply;

try {

- Send request reply = in.readLine();
} catch (IOException e) {
— Read reply/} :2;:1:1;‘3? IPCException("Socket read problems”, e);
try {
— Close sock } coten Tobsception o] |

throw new IPCException("Socket close problems (1)", e);
}
}
// ... and close the connection

try {
clientSocket.close();

L] L] L]
} catch (IOException e) {
g I n el I ICIe nt but rel I a ble throw new IPCException("Socket close problems (2)", e);

}

return reply;

CS@AU Henrik Baerbak Christensen 41

- Server Request Handler

AARHUS UNIVERSITET
 Jenkov single thread Pt e oo sngcAndpispatch(socket clientsocket)

PrintWriter out =
new PrintWriter(clientSocket.getOutputStream(), true);

- ACCept InCOmlng SOCket BufferedReader in = new BufferedReader(new InputStreamReader(

clientSocket.getInputStream()));

- Read requeSt String inputLine;
. String marshalledReply = null;
— Call invoker o |
inputLine = in.readLine();

System.out.println("--= Received " + inputLine);

l - Send I’ep|y if (inputLine == null) {

System.err.println(

— (::I()E;EB ES()()F(EBt 'Server read a null string from the socket???");

} else {
viic veid runt) € marshalledReply = invoker.handleRequest(inputLine);
openServerSocket();
System.out.println("*+* Server socket established *¥+"); SyStem. Dut_println{ L re;)lied : "+ ma rshalledﬁeply} H
isStopped = false; }

while (!isStopped) {

out.println(marshalledReply);

System.out.println("--> Accepting...");

Socket clientSocket;
try { : I : Yo
clientSocket = serverSocket.accept(); SyStem' DUt' prlntln(C.I‘-GSlng SGCKEt o } v
} catch(IOException e) { 1 -
if(isStopped) { in. C]'Dsei :. r
System.out.println("Server Stopped.") ; out. close{ :| -
return; '’
) }
throw new RuntimeException(
"Error accepting client connection", e);
}
try {

readMessageAndDispatch(clientSocket);
} catch (IOException e) {
System.out.println{"ERROR: IOException encountered: "
+ e.getMessage());
}
} . .
System.out.println("Server Stopped."); Henrlk B%rbak Chrlstensen 42
}

/v

AARHUS UNIVERSITET

CS@AU

Summary

| «interface» |
Role SAL
Client side Server side
method(a,b,c) ‘
ClientProxy i ‘ ‘ Servant ‘
Domain
method(a,b,c) ‘ method(a,b,c) ‘
=7
/// I
/ marshalls cal -~ Demarshalls and
y g
Requestor arshalling Y dispatchs call
request(location, objectid, Invoker
operationld, arguments) handleRequest(byte[])
x‘\ ;ﬂ
||/ sends on network / receives on network
ClientRequestHandler IPC ‘ ServerRequestHandler
send({address, byte[]) ‘ ‘ byte[] receive() ‘
e P
. g
S IPC IPC [
Library Library

Henrik Baerbak Christensen

43

